Human Papillomaviruses Preferentially Recruit DNA Repair Factors to Viral Genomes for Rapid Repair and Amplification

نویسندگان

  • Kavi Mehta
  • Laimonis Laimins
چکیده

High-risk human papillomaviruses (HPVs) activate the ataxia telangiectasia mutated-dependent (ATM) DNA damage response as well as the ataxia telangiectasia mutated-dependent DNA-related (ATR) pathway in the absence of external DNA damaging agents for differentiation-dependent genome amplification. Through the use of comet assays and pulsed-field gel electrophoresis, our studies showed that these pathways are activated in response to DNA breaks induced by the viral proteins E6 and E7 alone and independently of viral replication. The majority of these virally induced DNA breaks are present in cellular DNAs and only minimally in HPV episomes. Treatment of HPV-positive cells with inhibitors of both ATM and ATR leads to the generation of DNA breaks and the fragmentation of viral episomes, indicating that DNA breaks are introduced into HPV genomes. These breaks, however, are rapidly repaired through the preferential recruitment of homologous recombination repair enzymes, such as RAD51 and BRCA1, to viral genomes at the expense of cellular DNAs. When HPV-positive cells are treated with hydroxyurea, this recruitment of RAD51 and BRCA1 to viral genomes is greatly enhanced with little recruitment to damaged cellular DNAs and with retention of the ability of viral genomes to amplify. Overall, our studies demonstrated that human papillomaviruses induce breaks into cellular and viral DNAs and that the preferential repair of these lesions in viral episomes leads to genome amplification.IMPORTANCE High-risk human papillomaviruses (HPVs) are the etiologic agents of cervical cancer and are linked to the development of many other anogenital and oropharyngeal cancers. Replication of high-risk HPVs requires the activation of the ataxia telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) DNA repair pathways. Our studies have shown that HPVs activate these pathways by inducing double-strand breaks primarily in cellular DNAs and minimally in viral genomes. Breaks are induced in viral genomes but are rapidly repaired through the preferential recruitment of homologous repair factors such as RAD51 and BRCA1 to HPV episomes. The preferential repair of breaks in viral genomes leads to amplification. Our study identified a novel mechanism by which human papillomaviruses manipulate DNA repair pathways to productively replicate viral genomes. The induction of genetic instability in cellular DNAs likely contributes to the generation of mutations that lead to the development of cancers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Deacetylase Sirtuin 1 Regulates Human Papillomavirus Replication by Modulating Histone Acetylation and Recruitment of DNA Damage Factors NBS1 and Rad51 to Viral Genomes

Human papillomaviruses (HPV) regulate their differentiation-dependent life cycles by activating a number of cellular pathways, such as the DNA damage response, through control of post-translational protein modification. Sirtuin 1 (SIRT1) is a protein deacetylase that modulates the acetylation of a number of cellular substrates, resulting in activation of pathways controlling gene expression and...

متن کامل

Human Papillomaviruses Activate and Recruit SMC1 Cohesin Proteins for the Differentiation-Dependent Life Cycle through Association with CTCF Insulators

Human papillomaviruses infect stratified epithelia and link their productive life cycle to the differentiation state of the host cell. Productive viral replication or amplification is restricted to highly differentiated suprabasal cells and is dependent on the activation of the ATM DNA damage pathway. The ATM pathway has three arms that can act independently of one another. One arm is centered ...

متن کامل

Impact of the DNA Damage Response on Human Papillomavirus Chromatin

The fidelity of replication is regulated by the DNA damage response (DDR), an elaborate signaling network of proteins that detect, signal, and repair DNA lesions. While some viruses have evolved mechanisms to avoid or eliminate DNA repair machinery, others exploit the DDR to replicate their genomes [1]. Recent studies indicate that the DDR facilitates productive replication of human papillomavi...

متن کامل

Human Papillomavirus and the DNA Damage Response: Exploiting Host Repair Pathways for Viral Replication

High-risk human papillomaviruses (HPVs) are the causative agents of cervical and other genital cancers. In addition, HPV infections are associated with the development of many oropharyngeal cancers. HPVs activate and repress a number of host cellular pathways to promote their viral life cycles, including those of the DNA damage response. High-risk HPVs activate the ataxia telangiectasia-mutated...

متن کامل

Localization of Double-Strand Break Repair Proteins to Viral Replication Compartments following Lytic Reactivation of Kaposi's Sarcoma-Associated Herpesvirus

Double-strand breaks (DSBs) in DNA are recognized by the Ku70/80 heterodimer and the MRE11-RAD50-NBS1 (MRN) complex and result in activation of the DNA-PK and ATM kinases, which play key roles in regulating the cellular DNA damage response (DDR). DNA tumor viruses such as Kaposi's sarcoma-associated herpesvirus (KSHV) are known to interact extensively with the DDR during the course of their rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018